Strong ferromagnetism at the surface of an antiferromagnet caused by buried magnetic moments.

نویسندگان

  • A Chikina
  • M Höppner
  • S Seiro
  • K Kummer
  • S Danzenbächer
  • S Patil
  • A Generalov
  • M Güttler
  • Yu Kucherenko
  • E V Chulkov
  • Yu M Koroteev
  • K Koepernik
  • C Geibel
  • M Shi
  • M Radovic
  • C Laubschat
  • D V Vyalikh
چکیده

Carrying a large, pure spin magnetic moment of 7 μB per atom in the half-filled 4f shell, divalent europium is an outstanding element for assembling novel magnetic devices in which a two-dimensional electron gas may be polarized due to exchange interaction with an underlying magnetically-active Eu layer. Here we show that the Si-Rh-Si surface trilayer of the antiferromagnet EuRh2Si2 bears a surface state, which exhibits an unexpected and large spin splitting controllable by temperature. The splitting sets in below ~32.5 K, well above the ordering temperature of the Eu 4f moments (~24.5 K) in the bulk, indicating a larger ordering temperature in the topmost Eu layers. The driving force for the itinerant ferromagnetism at the surface is the aforementioned exchange interaction. Such a splitting may also be induced into states of functional surface layers deposited onto the surface of EuRh2Si2 or similarly ordered magnetic materials with metallic or semiconducting properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emerging Diluted Ferromagnetism in High‐T c Superconductors Driven by Point Defect Clusters

Defects in ceramic materials are generally seen as detrimental to their functionality and applicability. Yet, in some complex oxides, defects present an opportunity to enhance some of their properties or even lead to the discovery of exciting physics, particularly in the presence of strong correlations. A paradigmatic case is the high-temperature superconductor YBa2Cu3O7-δ (Y123), in which nano...

متن کامل

Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state,...

متن کامل

Room Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles

In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...

متن کامل

Magnetic phases of cobalt atomic clusters on tungsten.

First-principle calculations are employed to show that the magnetic structure of small atomic clusters of Co, formed on a crystalline W(110) surface and containing 3-12 atoms, strongly deviates from the usual stable ferromagnetism of Co in other systems. The clusters are ferri-, ferro- or non-magnetic, depending on cluster size and geometry. We determine the atomic Co moments and their relative...

متن کامل

Investigation on Influences of Synthesis Methods on the Magnetic Properties of Trimetallic Nanoparticles of Iron-Cobalt-Manganese Supported by Magnesium Oxide

Using Fe(NO3)3.9H2O, Co(NO3)2.6H2O and Mn(NO3)2.4H2O the magnetic properties of nanoparticles trimetalic Iron - Cobalt - Manganese, with supported Magnesium oxide have been prepared by Co-precipitation and Solvothermal methods. The prepared samples are characterized by Scanning Electron Micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014